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Pragmatic Clinical Trials Demonstration Project 

Title: Decreasing Bioburden to Reduce Healthcare-Associated Infections and Readmissions 

ABATE (Addressing Bioburden while Admitted To Eliminate) Infection Trial 

1.0 Randomization Plan 

1.1 Randomization 
Randomization will occur at approximately the 8th month of the baseline period. Each participating 

hospital will be notified of their placement at that time. This will be done because of the requisite 1-3 month 
period to submit and schedule intervention protocols for approval by relevant hospital committees which often 
meet monthly or quarterly. As per routine policy in all hospitals, no training or implementation activities may 
occur prior to obtaining requisite hospital committee approvals. This will allow approval to occur and 
appropriate training of staff to occur prior to the phase in period which will involve acquisition and introduction 
of intervention product.  

While this study is one of the largest cluster-randomized trials of hospitals, simple randomization of 54 
hospitals will not ensure balance of key variables by chance alone, and without blocking could even result in 
unequal numbers of hospitals in each arm. For example, with a naïve randomization, there would be a 9% 
chance of a 22-33 split, or worse. Thus, randomization will be stratified, with strata constructed to maximize the 
chance of balance for both baseline admission volume and the primary outcome, MRSA and VRE clinical 
cultures attributable to participating units. In addition, we will evaluate the possibility of constructing strata that 
balance additional variables, such as the mean comorbidity index (Romano score) of all patients in a hospital’s 
participating units, the percent of patients bathing daily, and the baseline use of chlorhexidine and mupirocin.  

Achieving balance on key features of the randomization units (in this case, hospitals) is a critical task in 
cluster-randomized trials, but little literature on it exists. Unlike individually-randomized trials, information about 
the clusters is often known in advance, but the number of clusters to be randomized can be relatively small. 
The existence of a priori data can mitigate the small numbers and help to obtain adequate balance through 
stratification. One attractive approach is to establish tuplets—matched sets (pairs, for a two-arm trial) – in 
which one member of each tuplet is assigned to each arm. Schemes for constructing tuplets need not be 
guided by theory. A formal approach would be to calculate the Mahalanobis distance between hospitals across 
all key variables and choose the set of tuplets with the minimum average distance. In this approach, we could 
standardize the variables, and then multiply by values calibrated to reflect any difference in the importance of 
balancing them. Other approaches are more ad hoc, such as prioritizing broad classes of balance on a key 
variable and making pairs within these strata based on lower-priority variables. However, there is no “best” 
method of tuplet construction, only sets that come closer to meeting the varied needs of each trial.  

We will enhance methods to inform the choice of tuplet-construction scheme which we developed in the 
REDUCE MRSA trial,1 2 and share them (see software sharing plan). One example method is to establish the 
pairs under several plausible tuplet-construction schemes, and use graphical methods to compare all possible 
realizations for balance between the arms under each scheme. For example, if two variables must be 
balanced, we could tentatively divide the sample into two groups under a tuplet construction scheme and then 
generate a scatterplot showing the between-arm absolute value of the mean difference for one variable on the 
x-axis and the second on the y-axis for each possible result of the randomization. We would then divide the 
groups again under the same scheme, and find another point on the scatterplot. Repeating many times would 
show the typical and distribution of balance under a scheme. Comparing the resulting scatterplots from each 
tuplet-construction scheme can reveal the relative risks of imbalance and benefits for balance accruing to each 
randomization scheme, in a practical sense. One tuplet construction method may result in generally close 
balance on one key characteristic and very variable balance on the other, while a competing scheme has good 
median balance on both characteristics, but where each has a long tail implying a few bad-luck assignments 
with poor balance. 

We hope to consider balance on more than two factors, and for assessing the impact on balance in this 
case, we will use a parallel coordinates plot, a multivariate plot method. A simulated example is shown to the 
right in Figure 1. There we show a potential result of a single tuplet construction method. The variables shown 
are volume, baseline rate of an outcome, the baseline rate of chlorhexidine use, and baseline rate of bathing. 
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Each blue, red, green, or black line shows the mean difference between arms for all four variables for one 
potential realized randomization. The results show that a few randomizations, in blue, are relatively imbalanced 
on volume and outcome but balanced on chlorhexidine use and bathing, while a few others, in black, have the 
reverse pattern. The green and red realizations are approximately equally balanced across these variables. If 
we considered it more important to balance on volume and outcome, this would probably not be an ideal 
scheme. 

As a final note, the statistical core advised us to consider the relative costs and benefits of strata of 
four, rather than tuplets, which are strata of two. There are 
sound statistical reasons to expect power to be slightly better 
with strata of four, although there is some debate on this point.3 
4 However, the balance between the arms may be worse.  The 
balance is of central importance, since balance ensures that the 
observed effect is not confounded—confounding requires that 
the confounder be out of balance between the arms.  We will 
examine whether the gain in power is strong enough, and the  

 
loss of balance slight enough, to pursue the strata of four in 
place of tuplets. 
 
 
2.0 Statistical Analysis Plan 
 
2.1 Finalized Outcomes  

Study outcomes were finalized following deliberation of the Steering Committee during the UH2 
planning year. Deliberations included response to recent published literature, including the REDUCE MRSA 
Trial which was conducted by our investigative team.1 2 The primary outcome will be the presence of at least 
one clinical culture with gram-positive multi-drug resistant bacteria (MRSA and VRE) attributable to a 
participating unit. This outcome was solidified following recent clinical trial evidence of the success of 
chlorhexidine (with and without mupirocin) in reducing these pathogens in ICUs.1 2 An priori secondary 
outcome intended for the primary manuscript is all-cause bloodstream infection attributable to a participating 
unit. Additional a priori secondary study outcomes intended for secondary manuscripts are provided in Table 1.  
 

Table 1. Study Outcomes 
Primary Outcome 
        MRSA and VRE clinical cultures a
Secondary Outcomes (Primary Manuscript)
 
        All-cause bloodstream infection a b 
Secondary Outcomes (Secondary Manuscripts) 

Gram-negative multi-drug resistant organisms a
Urinary tract infections a 
C difficile clinical tests a 
Blood culture contamination 
30-day infectious readmissions 
Emergence of resistance to chlorhexidine or mupirocin a 
Cost effectiveness 

a Attributable to participating units. Defined as occurring >2 days into a participating unit 
stay through 2 days following unit discharge 

b Includes subsets of GP and GN MDROs as well as key pathogens such as S. aureus 
 

These outcomes are designed to maximize the evaluation of the impact of decolonization in non-critical 
care settings. They will address major concerns in healthcare related to reduction of antibiotic-resistant 
pathogens, and impact on a range of hospital-associated infections. They will also assess the likelihood that 
bacterial strains will develop resistance to chlorhexidine and mupirocin following broad use among inpatients. 
 
 
 
 

2.2 Statistical Analysis 

volume outcome chlor.mu bathing

Figure 1. Parallel Coordinates Plot Showing 
Simulated Balance Across Multiple Variables 



3 
 

 All outcomes will be assessed similarly. Here, we use the example of the primary outcome: clinical 
cultures with MRSA or VRE (first per patient). MRSA and VRE clinical cultures will be attributed to participating 
units if the collection date occurred >2 days after admission to that unit through two days after discharge from 
that unit. This attribution is consistent with CDC guidance for surveillance of nosocomial infections.5 
 Main trial results will be based upon as-randomized, unadjusted analyses using proportional hazards 
models to account for patients’ variable tenure in the unit. This is necessary for the usual reasons: 
dichotomizing patients into those with vs. without infections would require us to define a fixed time-frame 
(within first x days of eligibility, ignoring some infections and omitting patients with shorter stays) or to ignore 
exposed time (counting infection during unit stay regardless of different length of stay). In addition, power is 
greater for proportional hazards models than for logistic regression models.6 7 8 9 

Clustering within hospital will be accounted for using shared frailties. The frailties are added model 
terms that allow unique hazards ratios for each hospital, and are necessary to account for clustered 
randomization.10 Model terms will include individual-level data on arm, hospital, outcome events, trial period 
(baseline vs. intervention) and an interaction term between trial period and arm. The assessment of trial 
success will be determined by the significance of the interaction term, which assesses whether the difference 
in hazard between the baseline and intervention period differs significantly between the two arms. We can 
write a simple version of the model symbolically as:  

ሻݐ௜௝ሺߣ ൌ ሻ݁ݐ଴ሺߣ
ఉభ஺௥௠೔ೕାఉమ௉௘௥௜௢ௗ೔ೕାఉయ஺௥௠೔ೕ∗௉௘௥௜௢ௗ೔ೕାఊ೔ 

where ݅ is a hospital, ݆ is a person within the hospital, ݉ݎܣ and ܲ݁݀݋݅ݎ are indicator variables and are = 0 for 
patients in a hospital in the control arm or baseline period and 1 if in the intervention arm or period. The overall 
hazard rate over time for person ݆݅ is defined as ߣ௜௝ሺݐሻ, a function of the baseline hazard ߣ଴ሺݐሻ, which is similar 
to the intercept in a linear model, times the proportionality for that subject, which is defined by the covariates 
 ௜௝ and the associated parameters, as well as the frailty, γi. The frailties are closely analogous݀݋݅ݎ݁ܲ ௜௝ and݉ݎܣ
to the random effect in generalized linear mixed models, and account for the clustering (similarity of hazard) 
within a given hospital. The ultimate effect of the intervention is assessed through ߚଷ: as parameterized, if it is 
negative and has p-value < .05 (or 95% CI excluding 0) then the intervention reduces the risk of infection. We 
plan to assess the need for different frailties by hospital by period (instead of just by hospital), as well as 
additional clustering by unit within hospital. In addition, we will investigate the need to adjust for the stratified 
randomization scheme described in Section 1.1. 
 Subsequent analyses will include as-treated and covariate-adjusted models. Adjusted models will 
account for individual characteristics such as age, gender, comorbidities based upon ICD-9 codes, and receipt 
of intervention products. We will also account for unit type (step down, medical, surgical, etc.) and baseline 
bathing frequency if this is not balanced after randomization. All analyses will be performed using current 
versions of SAS (9.4, as of writing, SAS Institute, Cary NC) and/or R (3.0.2, as of writing).11 

In addressing considerations of interim analyses to determine whether early stopping might be 
possible, the decision has been made not to pursue an interim analysis for several reasons. First, this trial 
meets the requirements of a minimal risk study. The study of topical bathing/decolonization therapy 
necessitates neither interim analyses nor stopping rules since reasonably anticipated adverse events are 
considered minor. Second, the collection time plus the lag in obtaining data and the relatively sparse power 
suggest that it is highly unlikely that an early look would result in a stoppage of the trial for either futility or 
success. Third, the addition of an interim analysis would affect power estimates in such a way to create an 
elongation of the trial beyond the time period that is acceptable to our health system partner. As described in 
detail above, participation in the trial requires a continuous assertion that other hospital interventions and 
campaigns that may conflict with the trial will not be pursued. This restriction to the usual tendency of hospitals 
to pursue multiple simultaneous interventions for prolonged periods of time was a critical consideration in 
designing the length and size of this trial. With regard to assessment of adverse events, we have built in a 
reporting system for both mild and severe side effects as described in our Data Safety Monitoring Plan and in 
our Decolonization Educational Materials.  

 
2.3 Power  

In many settings, an analytic approach to power is possible: given the assumptions of the model (e.g., 
logistic regression) are met, a relatively simple closed-form solution exists. However, generating the expected 
values to plug in may be difficult. In addition, some settings are complex enough that closed-form solutions 
may be difficult to generate. Many cluster-randomized designs fall into this class. In cluster-randomized 
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problems, it is also difficult to obtain reliable estimates of the additional parameters that are required, most 
notably the between-cluster variance or, equivalently, the intra-class correlation coefficient. Further additional 
complications are introduced for time-to-event outcomes such as those needed in the ABATE Infection Trial. 

In a previous trial, we used the logistic regression analogue to proportional hazards regression models 
and simulation to estimate power.7 Now, however, we propose an interesting and, to our knowledge, novel 
approach to power calculation, which we dub “bootstrap power calculation.” This method is described below 
and in an article published since the trial was planned.12 Briefly, the bootstrap is a powerful technique that uses 
the observed sample to approximate the underlying population, rather than a convenient analytic distribution.13 
The bootstrap power approach relies on the fact that we possess a large quantity of baseline data already. 
Loosely put, we (1) bootstrap a sample of observations from our observed baseline data to serve as the 
baseline sample in the power calculations. Then we (2) bootstrap another sample from the baseline data to 
serve as the intervention period data. Next, (3) we implement the randomization scheme in the bootstrapped 
sample. Then (4), for a randomly selected subset of the outcomes (e.g., bloodstream infections) observed in 
the bootstrapped intervention period sample in the hospitals randomized to intervention, we artificially change 
the outcome from infection to no infection. This represents the effect of the intervention, which we control by 
changing the size of the subset selected for this change. Simultaneously (5), for this subset we change the 
date of the event from the date of infection to the date of discharge, transfer to a non-eligible unit, or death—
i.e., the date of censoring, had no infection been observed. Finally (6), we fit the planned frailty model 
described in Section 2.2 above and record whether the null hypothesis of no association was rejected or not. 
This process is repeated many times, and the proportion of rejections is an estimate of the power under the 
given effect size. A confidence limit on this estimated power can be generated. In the table below, we show the 
power for removing the outcome from 0, 10, 20, and 30% of the subjects in the intervention arm in the 
intervention period. Removing 0% of the outcomes is a test of the technique: since we are not reducing the 
infection rate, the null is true, and rejections should occur only about 5% of the time.  

In the initial planning of the trial, we used the available 4-month baseline sample of patients from our 
participating trial hospitals and used three bootstrap samples to represent each 12-month baseline and 4.5 
bootstrap samples to represent the 18-month intervention period. This resulted in the power shown in Table 2. 

 
 

Table 2: Power and Exact 95% CI for Primary and Select Secondary Outcomes*    
Intervention Effect Primary Outcome 

MRSA, VRE Clinical Cultures 
Gram Negative 

MDRO** 
Clinical Cultures

All Pathogen Bacteremia 

*0% 5.6% (4.3-7.2%) 4.1% (3.0 – 5.5%) 5.2% (3.9 – 6.8%) 
10% 33% (28-37%) 15% (12 – 18%) 23% (19 - 27%) 
20% 92% (90-94%) 44% (40 – 49%) 68% (63 - 72%)
30% 100% (99-100%) 82% (79 – 86%) 98% (96 – 99%)

*Based on 500 bootstrap samples for each effect size, except for the 0% estimate, for which we did 1000 simulations 
to increase confidence that the alpha level is maintained when the null is true. 
** Gram-negative multi-drug resistant organism clinical cultures 

 
 

The above power estimates (Table 2) show that the technique has the desirable characteristic of 
rejecting the null only 5% of the time when it is true. We also see that power for MRSA or VRE clinical culture 
is ample, even if we prevent only 20% of the infections. For both selected secondary outcomes, the power is 
less, but still quite acceptable if the intervention prevents 30% of the infections. The primary strengths of the 
bootstrap power approach are that it allows us to avoid using literature estimates for the parameters when 
such estimates may not apply to the trial population, and it also avoids unrealistic assumptions about regularity 
(equal cluster sizes) or distribution (logistic instead of frailty models). The main weakness in this case is that 
correlation within hospital is generated to be the same in the baseline and intervention periods. In addition, we 
have not received all desired randomization stratification data by the time of this submission. Thus, 
stratification in the bootstrap process is limited to hospital size and the baseline rate of the outcomes. We 
believe that these are relatively benign issues: the correlation structure is unlikely to change importantly from 
period to period during the actual study, and the stratification is mainly to promote balance. It may affect the 
power, but mainly by reducing the variability in the outcome. 

After the baseline period, we were able to re-estimate the power, using the data collected in the full 
baseline period. We used the bootstrap process outlined above, except that we used the observed 12-month 
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data for the baseline. We assessed the power for the original proposal of an 18-month intervention and for a 
slightly extended 21-month intervention period, oversampling the observed 12-month baseline data as needed 
in each case (see Table 3). This updated power assessment was considered to be more accurate in that it 
used approximately three times as much real data—12 months vs. four months—compared to the original 
estimate. Furthermore, additional cleaning steps were applied to the 12 months of baseline data. In these new 
assessments, we focused on an intervention effect of 20%. The power for the primary outcome was 99.9% 
(95% CI: 99.4-99.99%) with 18 or 21 months of follow-up.  For all pathogen bacteremia, the power was 85% 
(95% CI: 83-87%) with 18 months follow-up and 89% (87-90%) with 21 months follow-up. The steering 
committee decided to use 21 months of follow up to ensure greater power with less common secondary 
outcomes and account for lessened effects at sites that may drop out of the trial. 
 
Table 3: Revised Power and Exact 95% CI for Primary and Select Secondary Outcomes*    

Analysis Effect Primary Outcome 
MRSA, VRE Clinical Cultures

All Pathogen Bacteremia 

As-randomized, 18-mo 20% 99.9% (99.4% – 99.99%) 85% (83% – 87%) 
As-randomized, 21-mo 20% 99.9% (99.4% – 99.99%) 89% (87% – 90%) 
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